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Absfirct

This report develops a systematic approach for determining the acceleration capability and

the acceleration properties of the end-effector of a planar two degree-of-freedom manipulator. The

acceleration of the end-effector at a given configuration of the manipulator is a linear function of the

actuator torques and a (nonlinear) quadratic function of the "joint-velocities". By decomposing the

functional relationships between the inputs (actuator torques and "joint-velocities") and the output

(acceleration of the end-effector) into two fundamental mappings, a linear mapping between the

actuator torque space and the acceleration space of the end-effector and a quadratic (nonlinear)

mapping between the "joint-velocity" space and the acceleration space of the end-effector, and by

deriving the properties of these two mappings, it is possible to determine the properties of all

acceleration sets which are the images of the appropriate input sets under the two fundamental

mappings. The determination of the properties of the quadratic mapping, a key feature of the

present work, allows us to obtain analytic expressions relating important acceleration properties of

the end-effector to all the manipulator parameters and input variables of interest.



1 Introduction

In this paper, we develop and apply a systematic approach for studying the acceleration capability and

acceleration properties of (a reference point on) the end-effector of a planar two degree-of-freedom

manipulator. The application of the theory developed in this paper to two important problems which

arise in the design of manipulators -selection of a manipulator type and determination of actuator sizes -

are described in companion paper (Desa and Kim, 1989). Acceleration theory for spatial manipulaors is

developed in a third paper (Kim and Desa, 1989).

An informal statement of the acceleration problem is as follows:

Consider the planar two degree-of-freedom manipulator shown schematically in Figure 1. We are

interested in studying the acceleration of a reference point P on link 2. (P is typically a point on the joint

axis of the end-effector. therefore the acceleration of P is often loosely referred to as the acceleration

of the end-effector.) The usefulness of studying the acceleration of the end-effector of manipulators has

been discussed in (Yoshikawa, 1985), (Khatib and Burdick, 1987) and (Graettinger and Krogh, 1988) and

will additionally be demonstrated in (Desa and Kim, 1989).

As will be shown below, the acceleration capability of the point P under various conditions is best

described by certain acceleration sets. Two properties which are used, in general, to characterize these

sets are the maximum possible magnitude of the acceleration of P and the maximum magnitude of the

acceleration of P which is available in all directions. The former property is simply called the maximum

acceleration of P and the latter the isotropic acceleration of P (Khatib and Burdick, 1987).

The study of the acceleration properties of the "end-effector" has been a subject of recent interest

(Yoshikawa, 1985; Khatib and Burdick, 1987; Graettinger and Krogh, 1988). It is therefore useful

to clearly state what makes the problem of studying acceleration properties complex and how these

researchers have addressed this complexity.

The acceleration of the reference point P at a given configuration (in the workspace of the manipulator)

is a linear function of the actuator torques and a (nonlinear) quadratic function of the rates of changes

of the joint-variables Cjoint velocities"). The complexity of the "acceleration problem" arises from

these quadratic nonlinearities in the "joint velocities". (Yoshikawa. 1985) studied the acceleration of (a

reference point P on) the end-effector in connection with developing a dynamic manipulability measure:



in this study the nonlinearities were essntially ignored since the measure was estimated at zero "joint

velocities". In studying isotropic acceleration, (Khatib and Burdick, 1987) dealt with the nonlinearities

in a somewhat ad-hoc fashion by evaluating isotropic acceleration at a "low" and a "high" joint velocity

vector. (Graettinger and Krogh, 1988) handled the nonlinearities by posing the problem of determining

the isotropic acceleration as an optimization problem.

In contrast to the above approaches, the present paper demonstrates how these nonlinearities can

be handled in an analytical manner. The fundamental hypothesis of this paper is the following: By

decomposing the functional relationships between the inputs (actuator torques and joint variable rates)

and the output (acceleration of P) into two fundamental mappings, a linear mapping between actuator

torque space and the acceleration space of point P and a quadratic (nonlinear) mapping between the "joint

velocity" space and the acceleration space of P, and by deriving the properties of these two mappings,

it is possible to determine the properties of all acceleration sets which are the images of the appropriate

input sets under the two fundamental mappings.

The properties of linear mappings are well-known. The determination of the propertids of the quadratic

mapping between the joint velocities and the acceleration-space of P is one of the contributions of

this paper and permits us to obtain exact analytic solutions for the isotropic acceleration under various

conditions.

In summary, the contributions of this paper are the following:

1. Development of a systematic approach (stated in section 2) for defining, determining and charac-

terizing acceleration sets.

2. Closed-form analytic expressions relating important acceleration properties of manipulators to all

the manipulator parameters and input variables (torques, joint variable rates or "joint velocities")

of interest. (The only exception is the maximum local acceleration which is specified in terms of

tight lower and upper bounds in section 6.)

3. Necessary and sufficient conditions for the existence of isotropic acceleration. (Earlier studies seem

to implicitly assume that isotropic acceleration always exists.) These conditions are stated explicitly

in terms of manipulator parameters and input variables.
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4. Analytical expressions for detcrmining the maximum and isotropic acceleration of the end-effector

at any ("local") configuration of the manipulator.

5. The theory treats nonlinearities in an "exact" manner (as mentioned above).

One consequence of 2 and 3 above is the development of simple algorithms (Desa and Kim 1989)

for sizing actuators in order to guarantee a specified isotropic acceleration. The theory developed in this

paper is also applicable to two degree-of-freedom manipulators with closed-chains (Desa and Kim, 1989).

The next section, which describes our approach, also provides the dual function of being a "road-map"

of the paper.



2 Description of the approach

A systematic approach for studying the acceleration of (a reference point P on) the end-effector based on

the use of input-output mappings is as follows:

1. Define the input variables and output variables of interest (subsection 3.1). The output of interest is

the acceleration of the reference point P.

2. Define the input sets of interest (subsection 3.1).

3. Define the input-output functional relations. These are obtained from the dynamical and kinematical

equations of the manipulator (subsection 3.2).

4. Define fundamental mappings from these functional relations (subsection 3.3). There are two

fundamental mappings, a linear mapping and a quadratic mapping.

5. Define the image sets of the input sets under the mappings obtained in set 4 (subsection 3.4). These

image sets are the acceleration sets of interest.

6. Define general properties which can be used to characterize ("measure") acceleration sets (subsection

3.5).

7. Determine the properties of the mappings defined in step 4 (section 4).

8. Determine the acceleration sets defined in step 5 using the properties of the mappings obtained in

step 7 (section 4).

9. Determine the specific properties of the acceleration sets determined in step 8 using the "measures"

or general properties defined in step 6 (section 5).

10. Determine the local acceleration properties for any configuration q of the manipulator using the

properties of the acceleration sets obtained in step 9 (section 6).

4
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Figure 1: Schematic diagram of a planar two degree-of-frezdom manipulator

3 Definition of the acceleration sets

3.1 Manipulator input and output variables

Consider a serial two degree-of-freedom manipulator with two revolute joints shown in Figure 1. In this

subsection, we define the link parameters, the input variables, the input sets, the output variables and the

output sets for a planar two degree-of-freedom manipulator. The manipulator is assumed to be rigid with

negligible joint friction and operates in a horizontal plane perpendicular to the "gravity vector". (The

case of manipulators operating in gravity fields is relatively straightforward and is dealt with in (Kim and

Desa, 1989).)

The link parameters necessary for describing the kinematic and dynamic behavior of the planar two

degree-of-freedom manipulator (Figure 1) are as follows. Let 11 denote the length of link 1, al the distance

from joint axis I to the center of mass of link 1, m, the mass of link 1, and I, the principal moment of

inertia of link 1 with respect to its center of mass about an axis perpendicular to the plane of the motion.
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Similarly, let 12, a2, m2, and 12 denote the corresponding variables for link 2 (see Figure 1).

Next, we define the input variables, the input constraints and the corresponding input sets of the two

degree-of-freedom manipulator. Let q, and q2 denote the generalized coordinates of the manipulator (see

Figure 1), q, being the joint variable at joint I and q2 the joint variable at joint 2. Define

[q (1.1)
q2

to be the vector of joint variables; the corresponding vector space of all q is called the joint space. If

qiL < qi < qiU, i = 1,2 (1.2)

denotes the constraint on joint variable i, then we can define the workspace W of a manipulator as

W= {qJqiL <- qi :_ qiu, i= 1,2}. (1.3)

Let 41 and q2 denote, respectively, the rates of change of the joint variables q, and q2; 41 and 42 will

be referred to as joint variable rates for short. Define

q ] 
(1.4)

to be the vector of the joint variable rates. If

14i!4j, i= 1,2 (1.5)

denotes the constraints on the joint variable rates, then we can define

F = { 1I I1 I<., i= 1,2} (1.6)

to be the set of all the possible joint variable rate vectors; graphically F can be represented by (the interior

and boundary of) the rectangle JIK1 J2K 2 shown in Figure 2.

Let 71 and r2 denote the actuator torques, respectively, at joints 1 and 2, and define

r [ ](1.7)
r2

- | 6
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Figure 2: Set of the joint variable rates of a two degree-of-freedom manipulator

to be the actuator torque vectors., Let

I T- 1TI r, i= 1,2 (1.8)

denote the constraints on the actuator torques at joints I and 2. We define

T= I{T I I rj 1C i ,, i= 1,2} (1.9)

to be the set of the allowable actuator torques; graphically T can be represented by (the interior and

boundary of) the rectangle ABCD in Figure 3.

The vectors q, q and r will be referred to as the input variables (more precisely the input variable

vectors) of the manipulator. We will also refer to the vector q as a configuration of the manipulator.

Let (xl, x2) denote the coordinates of a reference point P on link 2 (see Figure 1) in a coordinate

system fixed to the base reference frame N; (xl, x2) are commonly referred to as task coordinates. Define

XP [a (1 .10)

to be the vector of task coordinates; the corresponding vector space of all xp is called the task space.

'The vectors of actuator torques, joint variables, and joint variable rates denote column matrices, not physical vectors.
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Figure 3: Set of the actuator torques of a two degree-of-freedom manipulator

The velocity V and the acceleration P of the point P of the manipulator are, respectively, given by

= [ ](1.11)
xC2

and

= . (1.12)
12

The acceleration of P, V , is the output variable of interest in the present work. The corresponing vector

space A of all possible V is called the acceleration space, expressed by

A = {f I E R2}. (1.13)

3.2 Functional relations between the inputs q, r and the acceleration :kP

The next step is to obtain the functional relations between the acceleration xV and the inputs q and r

for a given configuration q. In this subsection, we show how the necessary functional relations can be

obtained from the manipulator dynamic equations and the (so-called) manipulator Jacobian relation.

The dynamic behavior of the two degree-of-freedom planar manipulator in the joint space can be

obtained using well-known methods (Kane and Levinson, 1983; Kane and Levinson, 1985; Desa and
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Roth, 1985) and is described by the following pair of equations:

dii14 + d124,-w2(2+20142)=-1", (1.14)

d2141 + d22 + -2121 (1.15)

where the coefficients, dij (ij = 1, 2) and v, are given in the Appendix.

Defining the following matrix operators

D = [dii d12 (1.16)

W 0 W 2 
(1.17)

W21 0

[O2]

4}2 = 1 (1.19)

dynamic equations,(1.14) and (1.15), become

Dq+ W{q} 2 = r. (1.20)

Note that equation (1.20) is the most general expression of the dynamics of a two degree-of-freedom

planar manipulator. The matrices D and W standard for various planar manipulator types are given in the

Appendix. The matrix D is the mass matrix of the manipulator.

Since the matrix D is always invertible, we can write (1.20) in a more convenient form for our

purposes as

q = D-'[7 _ W{4 }2J. (1.21)

A crucial step in the acceleration analysis of a two degree-of-freedom manipulator is the definition

of the matrix operator W and {j}2, which allows all the "non-linearities" (i.e. terms in the dynamic

equations (1.14) aLd (1.15) which are non-linear in the joint variable rates, i1 and 42) to be written as

the product of W and {q} 2  notation {}2 is used to draw attention to the fact that the elements of

9



the vector {q} 2 are quadratic in the joint variable rates 41 and q. Note that {4}2 is a vector and should

not be confused with the scalar q2 which is the square of the magnitude of q.

The relation between the velocity, V, of the point P. and the joint variable rate vector 4 is well known

(Desa and Roth, 1985):

= Jq (1.22)

where J is a (2 x 2) matrix called the manipulator Jacobian. The detailed expressions of the Jacobian

matrix for various planar manipulator types are given in the Appendix.

To obtain the expression for the acceleration V of the point P, we differentiate equation (1.22),

V = J + q. (1.23)

In the Appendix, we show that the second term in (1.23), 34q, can be written in the form

34 = -E{4} 2  (1.24)

where matrix E is skew-symmetric.

Substituting equation (1.24) into (1.23), we obtain

V = J4 - E{q} 2.  (1.25)

Defining the quantities,

A = JD - ' ,  (1.26)

B = -AW- E, (1.27)

it is easy to verify that the expression for the acceleration :RP of the point P, obtained by combining

equation (1.20) with equations (1.25) through (1.27), is given by

P = Ar + B{q} 2  (1.28)

where A, B are configuration dependent.

Equation (1.28) expresses the required (Input-Output) functional relation between the input variables,

q and r, and the acceleration P of the point P (the output variable) at a given configuration q. It is

important to note that the definition of the matrix "operators" W, E and {q}2 enables us to write the

dynamic equations in the compact form (1.28) which is critical in the sequel.
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3.3 Mappings

In this subsection, we define two fundamental mappings between the input variables and the acceleration

:V of the point P (the output variable).

It is convenient to regard the functional relation (1.28) as a mapping between the input variables

and r and the output variable RP for a given configuration q of the manipulator. Furthermore, defining

E' =Ar (1.29)

and

a 24

equation (1.28) can be written as

XP = a, + a4. (1.31)

The following two simple and obvious relations are useful when we define acceleration" sets below:

P(4 = 0) = a, = Ar (1.32)

P(T- = 0) = aq = B{q} 2. (1.33)

It is convenient to think of the vector a, as the contribution of the torques to the acceleration of the

reference point P, and the vector aq as the contribution of the joint variable rates to the acceleration of P.

The sum of these two vectors, therefore, gives us the acceleration of P as expressed by equation (1.31)

for a two degree-of-freedom manipulator.

Equation (1.29) can be viewed as a linear, configuration-dependent, mapping between the torque vector

r and its contribution a, to the acceleration of P. Similarly, equation (1.30) can be viewed as a quadratic,

configuration-dependent, mapping between the joint variable rate vector q and its contribution aq to the
acceleration of P. These are the two mappings of interest in this section.

3.4 Manipulator acceleration sets

Having defined two fundamental mappings of interest, we are interested in the image sets of the input

sets under the mappings (1.29) and (1.30) at a given configuration q of the manipulator. There are three

11



image sets of interest.

3.4.1 Image set S, of the actuator torque set T under the linear mapping

For a given set T of the actuator torques r described by equation (1.9), and represented graphically by the

rectangle ABCD in the r - plane (see Figure 3), we define the image set S, of T under the linear mapping

(1.32) as

S, = {XPIP(4 = 0) = Ar, r E T}. (1.34)

(Note that S, lies in the acceleration plane A.) From equation (1.32) and the above definition (1.34), we

see that S, represents the set of all possible accelerations (the acceleration capability of the manipulator)

when it is at rest (q = 0) in any configuration q and the actuators are turned on.

3.4.2 Image set S4 of the joint variable rate set F under the quadratic mapping

For a given set F of the joint variable rates q described by equation (1.6), and represented graphically

by the rectangle JIKIJ2K2 in the q - plane (see Figure 2), we define the image set S4 of F under the

quadratic mapping (1.33) as

S4 = {JiPXl(r = 0) = B{q}2 , 4 E F}. (1.35)

(Note that Sq lies in the acceleration plane A.) From equation (1.33) and the above definition (1.35), we

see that the image set S4 represents the set of all possible accelerations (the acceleration capability of the

manipulator) when the actuators are turned off (r = 0) in any configuration q.

3.4.3 State acceleration set

When a manipulator is in motion, the (dynamic) state of a manipulator can be specified by the joint

variables, (ql, q2), and joint variable rates, (/1, 42). The state vector u which characterizes the dynamic

state of the manipulator is defined as follows:

u= ( ) (1.36)

12



For a specified dynamic state of a two degree-of-freedom manipulator, the second term of the accel-

eration IP in equation (1.28) is a constant vector, which we denote by k(u) and define as follows:

k(u / b[ I 2 + b2(4i + B2)
2 - 411 (1.37)

Equation (1.28) can then be written as follows:

k= Ar + k. (1.38)

For a given dynamic state u of the manipulator, we define the state acceleration set, Su, as the image set

of the actuator torque set T under the linear mapping (1.38):

Su = {fPVI = AT + k, 7 E T}. (1.39)

Su is therefore the set of all possible accelerations at any given dynamic state u of the manipulator. Since

the dynamic state u of the manipulator essentially specifies the velocity j of the point P in (1.11) in any

configuration, we can also interpret the state acceleration set Su (the set of available accelerations) as the

acceleration capability of the manipulator when the manipulator is moving with the velocity xY' in a given

configuration q.

3.5 Characterization of the acceleration sets

Once the acceleration sets defined in the previous section have determined, one would like to characterize

them. In this section, we define two properties which are useful in characterizing acceleration sets.

Figure 4 shows an acceleration set S in the acceleration plane x, and two circles C, and C2. The circle

C1 of radius r, is the smallest circle centered at the origin which completely encloses S. Its radius r,

therefore represents the maximum (magnitude of the) available acceleration in S. The circle C2 of radius

r2 is the largest circle centered at the origin which lies within S. Its radius r2 therefore represents the

largest (magnitude of) acceleration available in all directions.

We define the following two properties of S:

" the maximum acceleration of S: am.x(S) = rl,

" the isotropic acceleration of S: also(S) = r2.

13



acceleration set S

maximum acceleration, r1

Figure 4: Characterization of an acceleration set in the acceleration plane

Comments:

1. As will be shown, the maximum acceleration and isotropic acceleration are two measures which

can be readily extracted once the acceleration set is known.

2. The isotropic acceleration (Khatib and Burdick, 1987; Graettinger and Krogh, 1988) is a useful

measure of the acceleration set, since it is a property which does not depend on direction.

3. The average acceleration of the set S cannot readily be extracted in closed-form (or by appropriate

bounds) from the acceleration set S. It can however be numerically determined from descriptions

of the various acceleration sets given in the next section. Also the physical meaning of the average

acceleration is not clear.

14



4 Determination of the acceleration sets

Analytic expressions for the determination of the three sets S., Sq and Su are presented, respectively, in

section 4.1, 4.2 and 4.3. The determination of S, and the state acceleration set Su follows directly from

well-known properties of linear mappings while the determination of the set S4 requires the derivation of

tv: properties of quadratic mappings which are new

4.1 Determination of the image set S,

The set S, is the image set of the actuator torque set T under the linear mapping (1.32).

Result 1: The image set S, of the actuator torque set T under the linear mapping (1.32) is (the interior

and boundary of) the parallelogram A'B'C'D' in the k - plane whose vertices A', B', C', and D' are

as follows:

A' : (a1rTo +a21r2,, a21Trlo+a227-2o),

B : (all rlo - a 2 r2o, a21rlo - a22r2o),

C : (-allI-ro - a21T2o, -a21Tlo - a22 2o),

D' : (-alrio + a212o, -a21ro + a22ro), (1.40)

where a~i (ij=1, 2) are the elements of the matrix A defined in equation (1.26). The centroid of the

parallelogram A'B'C'D' is the origin 0 of the i-plane.

Result 2: The sides A'B', B'C', C'D', and D'A' of the parallelogram S, (Figure 5), which comprise the

boundary of the set are given by the following equations:

A'B' : a22x1 - a1212 = det(A)To0 , (1.41)

B'C' :-a2111l+ aiiI2 = det(A)ruo, (1.42)

C'D' :a22t - a,2x2 = - det(A)rTo, (1.43)

D'A' : -a211 1 + al ¢xz = - det(A)r2,,. (1.44)

where det(A) is the determinant of the (2 x 2) matrix A.

15
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12 CO

Figure 5: Image set of the linear mapping of a two degree-of-freedom planar manipulator

Proof of Result 1:

The following are well know properties of a linear mapping:

1. A line in the r-plane will map into a line in the x-plane. In particular, the line i, with equation 7-1

= 0, maps into the line 4 whose equation is

i : a221, - aI22 =0, (1.45)

and the line 12, with equation r2 = 0, maps into the line /2 whose equation is

12 : -a2111 + a.11 2 = 0. (1.46)

Both 4 and 1 pass through the origin (Figure 5).

2. Any line gi parallel to 11 maps into a line g, parallel to .

3. Any line g2 parallel to I maps into a line g2 parallel to 4.

16



Regarding the rectangle ABCD (set 7) as a set of lines parallel to I and 12 one can easily show the

well-known fact that the image of ABCD is a parallelogram A'B'C'D'. The vertices A', B', C' and D'

are the images, respectively, of the vertices A, B, C and D. Substituting the coordinates of A(r 1 o, 72,),

B(7r1 o, -r2o), C(-rlo, -r2o) and D(-rlo, T2o) into equation (1.32), we obtain the coordinates of the

vertices A', B', C' and D' as given in equation (1.40). From equation (1.40), we see that the vertices

A' and C' are equidistant from the origin and that the vertices B' and D' are equidistant from the origin.

Therefore, the origin of the i-plane is the centroid of the parallelogram A'B'CD'.

Proof of Result 2:

We next need to determine the equations of the lines A'B', B'C, C'D', and D'A', which form the

boundary of the parallelogram A'B'C'D' in the i - plane. A'B' is the image of the line AS. whose equation

is r = ri.; to obtain the equation of A'B', substitute the equation of AB (T = Ti,) into (1.32) to obtain the

following parametric equations in n2:

Ii = aIIrIo+a 2r 2 , (1.47)

22 = a2 rl . + a2 2 r2. (1.48)

Eliminating the parameter r2 between (1.47) and (1.48), we obtain the equation of the line A'B' in the i

- plane as given by equation (1.41). In a similar fashion, we can obtain the equations of the lines B'C',

C'D', and D'A' as in equations (1.42) through (1.44). Note that from equations (1.41) through (1.44) we

see that A'B' is parallel to CD' and B'C' is parallel to D'A' so that A'B'C'D' is indeed the parallelogram

shown in Figure 5.

4.2 Determination of the image set S4

The set Sq is the image set of the joint variable rate set F under the mapping (1.33). Set S4 is determined

from the following results

Results:

The set F in the q - plane is considered as a family of line segments passing through the origin. There

are two such types of line segments: those which end on the boundaries J1 K and J2K2 parallel to the

17
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Figure 6: Image set of the quadratic mapping of a two degree-of-freedom manipulator

42 - axis, a typical member of which is the line segment g, in Figure 6 (a), and those which end on the

boundaries J1K2 and J2K, parallel t, .- q - axis, a typical member of which is the line segment g2 in

Figure 6 (a).

1. Every line of the type g, maps into a line g' (see Figure 6 (b)) in the k - plane, one end of which

is the origin and the other end of which lies on the line segment fK' whose equation is:

1- 2 + -+ 0 (1.49)312 -b2 b22

where xl lies in the interval [bl 1 0 + bl2(2o 4+ 241.0 2.), b11421. + bl2 (422o - 241q2.)].

2. Every line of the type g2 (see Figure 6 (b)) maps into a line g2 in the i plane, one end of which

is the origin and the other end of which lies on the quadratic curve K'N'f (shown dashed between

K' and N') whose equation in the parametric (in 41) form is:

21 =  bll42 +b12(2,+24j12,),

X2 = b21q +b22(/2U+241j 2 o). (1.50)
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3. The image set of F is (the interior and boundary of) the region Of! K' shown in Figure 6 (b), and

the coordinates of N',!, and K' are as follows:

N' ( b 124, b22), (1.51)

J' ( Ib - -+ b22()4q10  4 2.)2+ b22(qio +//2o)2), (1.52)

K' ( (bli - bl2)e + b12(ilo -//2o)
2 , (1.21 - + b22 (41. - 2)2). (1.53)

Proof:

The quadratic mapping is defined by the following equation (1.33):

k=B{q} 2

which can be written in the expanded form

11 = bile, + b2(e2+2 h) 2 ,

22 = b2lqf+b 22(q2+2/1j 2)2 . (1.54)

The determination of the set Sq which is the image of the set F (Figure 6 (a)) consists of two steps:2

1. Establishment of the properties of the quadratic mapping, and

2. Determination of the boundary of the image set Sq.

Consider the (input) i - plane. It is convenient to think of this plane as being generated by the

continuous family of lines passing through the origin with parametric equation

( = t
0 < m<o0. (1.55)

/2 = mt

Each value of m gives us a member of the family of lines, a typical member of which is the line I

shown in Figure 7. The image Iin the k - plane of the line I is obtained by substituting (1.55) into (1.54)
2While the approach described below is adequate for our present purposes, a more basic approach to determining Sq is

described in (Kim and Desa, 1989).
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Figure 7: Properties of the quadratic mapping

and is described by the following parametric equation,

.l = [bll+bl2(m2 +2m)] 2 ,

X2 = [b/21 + b22(m 2 + 2m)] 2 . (1.56)

From equation (1.55) and (1.56), one can enumerate the following facts:

Fact 1. The image of 1, viz. 1, is a straight line.

Fact 2. The origin of the I - plane maps into the origin of the x - plane.

Fact 3. Two distinct points (4i, 42) and (-4i, -2) map into the same point of the x - plane.

These results are shown graphically in Figure 7.

Fact I follows from the fact that (1.56) is the equation of a straight line in the parameter t. Fact 2

follows from the fact that the point (0, 0) in the q - plane, represented by the parameter t = 0, maps

into the point (0, 0) in the k - plane. If t is the parameter corresponding to the point (4i, 42) in the
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Figure 8: Input 4 - plane

l-plane, then -t is the parameter of the point (-q, -42) from (1.55). From (1.56), we see that points

with parameters t and -, will map into the same point in the i-plane. This proves Fact 3.

We can therefore state the following properties of the quadratic mapping:

Property 1. The image of any line segment in the q-plane, one end of which is the origin, is a line

segment in the x-plane with one end at the origin of the i-plane.

Property 2. The image of the line I passing through the origin in the q - plane is the half-line ', one

end of which is the origin (see Figure 7).

Property 3. Given any line I passing through the origin, and the two half-planes Pi and P2 formed by it

(see Figure 8), Pl and p2 will have the same image set in the ! - plane.

Property I is a direct consequence of Facts I and 2, property 2 a direct consequence of Facts 1, 2 and 3

and property 3 follows from Fa, 3.

We now apply the above properties to determine the image set S4 of the set F in the q-plane (See

Figure 6). Property 3 tells us that if we "bisect" F into two "half-sets" with a line passing through the

origin, then we only need to determine the image of one of these "half-sets". The most convenient half-set
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Figure 9: Input set F in 4 - plane

for our purposes is the set K1J1K2 (see Figure 9), one of the two half-sets formed by the "bisecting" line

KIK 2.

In order to use Property 1, it is convenient to view the set KjJK2 as a family of line segments passing

through the origin; we now need to determine the image of any line segment passing through the origin

in this set. There are two cases to consider: the family of lines such as gi, shown in Figure 9, which

have one endpoint on the origin and the other endpoint on the line segment K1J and the family of lines

such as g2, also shown in Figure 9, which have one endpoint on the origin and the other endpoint on the

line segment JIK2.

It is convenient to decompose the half-set K1J1 K2 into two subsets OK1JI and OK 2J as shown in

Figure 10. Subset OKIJI includes only the families of lines such as gj while subset OK2Jj includes only

the families of lines such as g2. The desired image set is the union of the images of OKIJI and OK2Jl.

From property 1 of the quadratic mapping, we know that any line segment, such as gi or g2 of the set F,

will map into a line segment with one endpoint passing through the origin of the k - plane. To obtain the

other endpoint of the images of the two families of lines, we need to find the image of the line segment

JIKI of the subset OJIKI and the image of the line segment JIK2 of the subset OJIK2 .

First, we determine the image of subset 01Kl (10 (b)) by finding the image of KIJI. The equation
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Figure 10: Determination of the image set Sq
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of K1J is

41 =q41.; 142 1< 20. (1.57)

To obtain the image K'Y of KIJ, we substitute (1.57) into (1.54) to obtain

11! = bjj42o + b12(42+ 2//jo/2) 2 ,

2 b2z ' +b22(42+21o42) 2 . (1.58)

Defining a parameter t as

t 4 42 + 241o42, (1.59)

equation (1.58) can be written in the form

.i = b11 1 0 +b12 t, (1.60)

12 = b2t o + b22t. (1.61)

Eliminating the parameter t between the two equations, we obtain the equation for the line segment

fK as given by equation (1.49). (This proves the first part of the result.) The resulting subset (Se) 1

which is the image of OKIJI is shown in Figure 10 (d).

Next, we determine the image of subset OJIK 2 by finding the images of K2J1. To obtain the image

JN'K' of J1K2, we substitute the equation for JIK2,

4/2 = 42; 141t 1:< 41o  (1.62)

into (1.54) to obtain the parametric equation (1.50). Note that (1.50) represents the equation of a quadratic

curve in terms of the parameter 41. (This completes the second part of the result.) The resulting subset

(Sq)2 which is the image of OK 2J1 is shown in Figure 10 (e).

The desired image set Sq of F is the union of (Sq)1 and (Sq)2 and is shown in Figure 10 (0.

Note that the intersection of (S4 )1 and (S4)2, (St) n (S4)2, is not empty. Because Sq is the image

of F under a quadratic mapping, there are points inside S4 which are the image of two distinct points in

KIJIK2. In particular, any point in the set (S4 )1 n (Sq)2, will be the image of two points are belonging to

OKIJI and the other to OK2J!.
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Figure 11: State acceleration set of a two degree-of-freedom manipulator

The images N', f and K', respectively, of Nj(O, q42), J1 (q1., //.) and K1 (41., -42.), are obtained

by substituting their (41,4/2) coordinates into equation (1.54) to obtain the required results (1.51), (1.52).

and (1.53).

4.3 Determination of the state acceleration set Su

The state acceleration Su corresponding to a state u = (q, 4)T of the planar manipulator was defined by

equation (1.39) and is the image set of the actuator torque set T under the mapping (1.38). We obtain the

following results for the determination of the state acceleration set Su.

Result 1: For every element k(S,) of the image set S,, there is a corresponding element k(Su) of the

state acceleration set Su, given by

k(Su) = i(S.) + k(q, 4), (1.63)
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where

k(q, k[i  = 0 +b2(1= B{q} 2. (1.64)
[k2 J b 21  + b22( + 241q2)

Result 2: The state acceleration set Su, corresponding to a state u = (q, qJ)T of the planar two degree-of-

freedom manipulator is the parallelogram A"B"C"D" shown in Figure 11 obtained by translating

the set S. by the vector k(q, q) in the I - plane. The centroid of Su is (ki, k2).

Proof of Result 1:

The results 1 and 2 are straightforward.

From (1.34), a member k(S .) of S . is given by

x(S 7 ) = A-. (1.65)

From (1.39), a member x(Su) of Su is given by

i(Su) = Ar + k (1.66)

where k is given by equation (1.64). Combining (1.65) and (1.66), we obtain

kCSu) -- K($,) + k, (1.67)

which is equation (1.63).

Proof of result 2:

From equation (1.63), we see that if we take a vector i(S,) of S, and add the vector k to it we obtain

the corresponding member k(Su) of Su. So, if we add the vector k to every vector in the set S, we obtain

the required set Su. Therefore, Su is the parsllelogram A"B"C"D" (Figure 11) obtained by translating the

set S. (the parallelogram A'B'CD' in Figure 11) by the vector k. The centroid of S, is x(S,) = (0, 0).

From (1.67), we see that the corresponding centroid of Su is

x(Su) = 0 + k = k. (1.68)

This completes the proof of Result 2.
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gree-of-freedom manipulator

5 Properties of the acceleration sets

In this section, we extract the properties - defined in subsection 3.5 - of the acceleration sets S, Sq and

Su determined in the previous section.

5.1 Properties of the acceleration set S,

We characterize the image set S,. of the linear mapping as follows:

Result 1: The maximum acceleration of the acceleration set S, is denoted by ai,,(S-) and is given by

ama(S.) = max[d(OA'), d(OB')] (1.69)

where

d(OA') = /(auiro0 + a r2o)2 +(a2 1 rlo + a22"r2) 2

d(OB') = V/(allro - al2r2o) 2 + (a2 1 lo - a22 r ,) 2
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Result 2: The isotropic acceleration of the acceleration set S. will be denoted by a,(S) and is given

by

ajso(S,7 ) = min[p(A'B'), p(B'C')] (1.70)

where

p(A'B') = detAi 0

p(B'C') = detA I To

/a 1 +a 1

Proof of Result 1:

The maximum acceleration of S,. is the distance from the origin to the furthest vertex of the parallel-

ogram A'B'C'D' (see Figure 12). Letting d (OA') through d (OD') denote, respectively, the distances of

vertices A' through D' from the origin 0 in the k - plane, am.(S,) is given by

am(S,) = max[ d(OA'), d(OB'), d(OC'), d(OD')I]. (1.71)

A' and C' are equidistant from the origin 0. Also, B' and D' are equidistant from the origin 0. So,

amu.(S,) is given by

a,1.(S.) = max[ d(OA'), d(OB')]. (1.72)

Using (1.32), the distance d(OA') from the origin 0 to the point A'

d(OA') = ai11"o + a12r~,) 2 + (a21ri + a22r2) 2 . (1.73)

In exactly analogous fashion, we obtain

d(OB') = V(alirio - al2r2o) 2 + (a21l7l1 - a2r20)2 . (1.74)

Equations (1.72), (1.73) and (1.74) comprise Result 1.

Proof of Result 2:
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The isotropic acceleration of S, is the shortest distance from the origin to the sides of the parallelogram

A'B'C'D'. Letting p (A'B'), p (B'C'), p (CD'), and p (D'A') denote, respectively, the perpendicular

distances from 0 to the sides A'B', B'C', C'D', and D'A', ai,(S) is given by

ai.(S,) = min[p(A'B'), p(B'C'), p(C'D'), p(D'A')]. 1.75)

Since the origin 0 is the centroid of the parallelogram S . parallel lines of the parallelogram A'B'C'D'

must be equidistant from the origin. Therefore, we can write the following relations:

p(A'B') = p(C'D'), (1.76)

p(B'C') = p(D'A'). (1.77)

Using (1.76) and (1.77), (1.75) can be written

ajs(S,) = min[p(A'B'), p(B'C')]. (1.78)

The distance from a point P(x., y.) to line ax + by + k = 0 is given by the following well-known result:

I ax + by. + k (1.79)

Using equation (1.41), (1.42) and (1.79), we obtain

p(A'B') = detAi rt (1.80)

p(B'C') = IdetA rt (1.81)

Va aj,

Substituting (1.80) and (1.81) into equation (1.78), we can obtain the required result (1.70) for the isotropic

acceleration aio(S,).

5.2 Properties of the acceleration set S4

We characterize the image set Sq by the maximum acceleration and the maximum distance of any element

of Sq from the two references lines I and 12 shown in Figure 5.

Definition 1:

= l(i 1 , 12)
_A v/(bllil + bi247 + 2b12ql]2) 2 + (b21l + 22 2 + 2b22qq2)2  (1.82)
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Figure 13: Maximum distance from reference line 11 to a point on the set $4

Definition 2: Let q' denote the real solution of the following cubic equation in 41:

[bi id + b12(422. + 24,42.)(bi 41 + bi242)

+ fb2l4' + b(22,+ 24,2,)](b2,4 + b22472) =0. (1.83)

Definition 3: Let p(i(Sq), I) and p(x(Sq),/2) denote, respectively, the distance of any point k(Sq) of Sq

from the lines I and 12.

pmAI(x(Sq),/4) m max p(k(Sq), 1), (1.84)

Pma,(X(Sq), 12) max p((Sq), 12). (1.85)

pmAn(k(SO), 1), for example, represents the distance of that point of Sq furthest from 11; pm.a(X(Sq), 11)

and pmaz((Sq), 12) are necessary for determining the local isotropic acceleration in subsubsection

6.

Definition 4:

A a22 bI -al2b2 . (1.86)

a22b 12 - a12022
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Definition 5:

= [ a2[bI14 + b12(42 + 24142)] - a12[b 2 14 + b22(42 + 2i1)] I (1.87)

02(41, 42) a. (, 2au(#, )

= a2l(b, 12,+ b12(422+24,4)] - al 1b2141+ b22(t22+ 24142)]l (1.88)

Result 1: For a general two degree-of-freedom planar manipulator, the maximum acceleration of the

acceleration set Sq will be denoted by amu(Sq) and is given by

amal(Sq) = max~l(/ 1., -41.), (', 'h,), (41., 4 ,), l(41., -b,)] (1.89)

where q is defined in (1.83).

For the two degree-of-freedom open-loop planar manipulator, shown in Figure 1,

ai,x(Sq) = /(i1o, 42o). (1.90)

Result 2: For a general two degree-of-freedom manipulator, the maximum distance from an element of

Sq to the reference lines 11 and 12 are, respectively, given by

Pm X($q),i)] (1.917)

f max[ai(4i., -41.), i(" 4,,), ai(41*, 42o), o0i., -4u)], i = 1,2. (1.92)

where 4" is defined in (1.86).

Proof of Result 1:

The magnitude squared of the acceleration of a point i(Sq) of Sq, denoted by a2(Sq), is given by

a2(Sq) Ps(4j, 42)=ffi 1(4j, 40 +22(4j, 42)

- (bii42 + b 24j + 2b1 2€4,2)2 + (0214 + 2 + 224142€) 2. (1.93)
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The maximum magnitude squared of the acceleration for the set Sq, denoted by a.(S), is given by

a.1($q) = max 12(41, 4i2), (1.94)
(qEF)

where F is shown in Figure 2 and specified by the constraints

41i 1:5 410, (1.95)

4?25 I42o. (1.96)

The maximum of 12, required in equation (1.94), will occur at point q E F which is either inside F or

on the boundaries of F where one or both constraints might be active. Furthermore, because of property

3 of the quadratic mapping, we only need to look at the boundaries JIKI and JIK2 of the half-set K2JIKI.

Therefore, to obtain the maximum of (1.82) under the constraints (1.95) and (1.96), we should consider

the following possibilities:

1. Neither of the constraints is active, i.e., the max[12(i1, 42)] occurs at a point q inside F.

2. Constraint (1.95) is active, i.e., max[12(/ 1, 42)] occurs at a point 4 lying on the boundary JIKI of

F.

3. Constraint (1.96) is active, i.e., max[12 (/ 1, 42)] occurs at a point q lying on the boundary J1K2 of

F.

4. Both constraints are active, i.e., max[12(i/, 2)] occurs at either (a) point JI (b) point Kt or (c)

point K2. Since, by virtue of Fact 3 of subsubsection 3.1.2, points K, and K 2 have the same image,

we only need to consider either K or K2 : we will choose KI.

To obtain the conditions for each one of the above cases to yield a maximum, we first differentiate

12(/1, q2) with respect to q1 and 42 to obtain

0(12) = + b12 (2 + 2 142)](b 1 4, + b 12q2)

+ 4[b 2 141 + b22(2 + 24 1g/2 )](b2 14 1 + b224 2 ), (1.97)
0(2) - 4[b 1l42 + b12(2 + 24 142)]b 12(41 + 42)

+ 4[b21421 + b22(42 + 2 14, 2)]b22)(4 1i + 72). (1.98)
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Now, we consider each case.

Case 1

To obtain the required 4 for the case where both constraints are inactive, we set the right-hand side

of (1.97) and (1.98) to zero,

a12 812

-=0 and -42 =0 
(1.99)

and obtain

41 = q2 = 0 (1.100)

which actually corresponds to the minimum value of 12(q1, 4l2), viz, zero. Therefore, max(12) does not

occur at a point q inside F.

Case 2

Since constraint (1.95) is active on the boundary J1 K of F, we have

41 = 41,, (constant). (1.101)

To obtain the maximum of 12, we set 812///2 = 0. We therefore set the right-hand side of (1.98) to

zero to obtain

4j1 + /2 = 0. (1.102)

Combining (1.101) and (1.102), we obtain

42 = -/10 (1.103)

and

max[12(ii, 42) = /2(q1o, -41io). (1.104)

Case 3

Since constraint (1.96) is active on the boundary JIK2 of F, we have

42 = 42, (constant). (1.105)
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To obtain the maximum, we set 812/o941 = 0. We therefore set the right-hand side of (1.98) to zero

and set 42 = 42, to obtain

[b1 iej + b12(420 + 24142)](bi 14i + bl2Q2.)

+ [b21e + b22(422,+ 24142)](b2iqi + b22420) = 0. (1.106)

Equation (1.106) is a cubic in 41 and will therefore have three solutions. Using simple ideas from algebraic

geometry, we now show that (1.106) can have at most one real solution in the region 14i <41o.

If 12(41, q2) does have a maximum m, then the condition 812/ 19 = 0 for obtaining /m,x is the

condition for the quadratic curve (1.50) -the image of J1K2 in the i-plane- and a circle of radius lmx

to have a common tangent (see Figure 14). By Bezout's theorem (Semple and Roth, 1949), a quadratic

curve and a circle can have at most two common points of tangency. Therefore, equation (1.106), which

expresses the condition 012/8t = 0, can have at most two real roots (one for each point of tangency).

However, (1.106) is a cubic in i1 and can therefore have either one real root or three real roots. Combining

the last two statements, we see that (1.106) can have at most one real root. (Since we are looking at

the quadratic curve in the region 1411 < 1., the real solution of (1.106) might lie outside the constraints

which simply means that (1.93) does not have an extremum in the region 14I11 <q40 ). Denoting the real

solution (1.106) in the region 1411 < 41. by 41 and using (1.105), we can write

max[I2(41, 42)] = 2(41, 42,). (1.107)

Case 4-a

When both constraints (1.95) and (1.96) are active, and max[/ 2(41, 42)] occurs at Jz(41o, q2,), then

max[12 (41, 42)A = 12(471., 42). (1.108)

Case 4-b

When both constraints (1.95) and (1.96) are active, and max[12(4/1, 42)] occurs at KI(410, -42,,), then

max[12(41, 42)] = 2(4 1o, -42). (1.109)

Therefore, amai(Sq) is obtained as the maximum of four quantities defined by equations (1.104),

(1.107), (1.108), and (1.109). This concludes the Proof of Result 1.
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Proof of Result 2:

The distance of any point i(Sq) of Sq from the line Ii, i=l, 2, is given by

p(i(S),I) = a(4i, 42) (1.110)

((S4),12) = a2(41, 42) (1.111)

where oj and o'2 are defined in equations (1.87) and (1.88). We first wish to determine p,( ((S),h) the

distance of 11 from that point of Sq furthest away from it (11). pm--((Sq),Ij) is shown in Figure 13 for

given S4 and given reference line 11 and can be defined as follows:

pmk((Sq), li) = max 1oI(41, 42)1 (1.112)
(4EF)

where F is shown in Figure 2 and is specified by the constraints

1 15 410, (1.113)

I 2 : 42o . (1.114)

The maximum of a,, required in equation (1.112), will occur at a point q E F which is either inside

F or on the boundaries of F where one or both constraints might be active. Furthermore, because of

property 3 of the quadratic mapping, we only need to look at the half-set K2J1K and its boundaries J1K

and J1 K2. Therefore, to obtain the maximum of (1.110) under the constraints (1.113) and (1.114), we

should consider the following possibilities.

1. Neither of the constraints is active, i.e., max o1 (41, 2) occurs at a point q inside F.

2. Constraint (1.113) is active, i.e., max al(q1,q) occurs at a point q lying on the boundary JIK1 of

F.

3. Constraint (1.114) is active, i.e., max a,(41, 2) occurs at a point q lying on the boundary JIK2 of

F.

4. Both constraints are active, i.e., maxoa1(41,4 2) occurs at either (a) point J1 or (b) point K1 or (c)

point K2. Since K, and K2 have the same image we only need to consider K,.
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To obtain the conditions for each one of the above cases to yield a maximum of a,, we first differentiate

o'(41,42) (equation (1.87) with respect to 41 and 4z to obtain

al = 2(a22b 1 - al2b21 )qI + 2(a 22b12 - a222),(1.115)

= 2(a 22b1 2 - a 12b 22 )(qi + 42). (1.116)

Now we consider each case.

Case 1

To obtain the required q, we set

al = 0 and a2 = 0. (1.117)

We therefore set each of the right-hand sides of (1.115) and (1.116) to zero to obtain

= =0 (1.118)

which actually corresponds to the minimum value of ai(/I, 42), viz, 0. Therefore, max(al(4i1, 4,2)) does

not occur at a point q inside F.

Case 2

Since constraint (1.113) is active on the boundary JIK1 of F, we have

41 = qio (constant). (1.119)

To obtain the maximum, we set 8ol/ 942 = 0. We therefore set the right-hand side of (1.116) to zero

to obtain

41 + 42 = 0. (1.120)

Combining (1.119) and (1.120), we obtain

'12 = -41o (1.121)

and

max[al(q1, /2)] = "1 (41 o, -41,). (1.122)

37



Case 3

Since constraint (1.114) is active on the boundary JiK2 of F, we have

42 = 42 (constant). (1.123)

To obtain the maximum, we set 9a,/4, = 0. We therefore set the right-hand side of (1.115) to zero and

set q2 = 42o to obtain the linear equation

(a2bli - a,2b2l)41 + (a22b 2 - al2b22)42 = 0. (1.124)

Combining (1.123) and (1.124), we obtain the solution of the equation (1.124)

I,

41= q, (1.125)

where
.,, a22b 12 - a 12 b2

q = a22bl - al2b 2l (1.126)

Therefore,

max[al(4 1 , 02)] = al (q", 02). (1.127)

Case 4-a

When both constraints (1.113) and (1.114) are active, and max o (41, 4 2) occurs at J1 (q1 o, 42,), then

max[al(41, 42)] = a,(41, 420). (1.128)

Case 4-b

When both constraints (1.113) and (1.114) are active, and max ol(41i, 42) occurs at K(4 1 ,, -4U0),

then

max[ol(q 1 , 42)] = alj(qlo, -. 2o). (1.129)

Therefore, Pmax(i(Sq), 1i) is obtained as the maximum of four quantities defined by equations (1.122),

(1.127), (1.128), and (1.129). In exactly analogous fashion, pmax(X(Sq), 12) is obtained as in (1.92).
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Figure 15: Characterization of the state acceleration set of a two degree-of-freedom

manipulator

5.3 Properties of the state acceleration set S.

Definition:

K : centroid of the acceleration set in the 1 - plane with coordinates kj, k2 given by (1.38).

p(K, 11): distance from point K to the reference line 11.

p(K, 12): distance from point K to the reference line 12.

p(A'B'), p(A"B") ... : distance from the origin to A'B', A"B", ... (see Figure 16)

Result 1: The maximum acceleration corresponding to any dynamic state u of the manipulator is denoted

by am.,(Su) and is given by

amax(Su) = max[d(OA"), d(OB"), d.(OC"), d(OD")] (1.130)
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where

d(OA") = /(allrlo + al2r2o + kl)2 + (a2lrlo + a22r2o + kl) 2

d(OB") = V(allrlo - a12r2o +k) 2 + (a2jrlo - anr2. +kl) 2 ,

d(OC") = /(allrlo + al2ro - kl) 2 + (a21r 1 + a22ri. - kj)2,

d(OD") = V/(allr o - a12r2o - kj) 2 + (a21 ro - a2272o - kl)2.

Result 2: The necessary and sufficient conditions for the existence of the isotropic acceleration are the

following:

I detAlrl,, - Ikla 22 - k2ai2l > 0, (1.131)

I detAIr2, - jkja 21 - k2aill > 0. (1.132)

Result 3: The isotropic acceleration corresponding to any dynamic state u of the manipulator is denoted

by ai1o(Su) and, if conditions (1.131) and (1.132) are satisfied, is given by

ai.(Su) = min [I det(A)Irlo-ak - a1 2k2I I I det(A) Ir - a21 k, - a,1k2 ]. (1.133)

Proof of Result 1:

Let d(OA") through d(OD") denote, respectively, the distances of vertices A" through D" from the

origin 0 in the k - plane. Then anx(Su) is the distances of the furthest vertex of the set Su which is the

parallelogram A"B"C"D". Therefore, afl.(Su) is given by

amui(Su) = max[d(OA"), d(OB"), d(OC"), d(OD")]. (1.134)

Using (1.40), the coordinates tj(A") and xi2(A") of vertex A" in the k - plane are given by

"it(A") = I 1(A')+k =aj1 rjo0 +a 2 Tr',+k, (1.135)

.k2(A") = jt2(A') + k2 = a2trl0 + a22T. + k2. (1.136)

The distance d(OA") from the origin 0 to the point A" is given by

d(OA") =

= V (airlo+a2r2o+kl)2+(a21ro +a22r2o+kl)2. (1.137)
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d(OB") = /(all"lo - a12T 0+ kl)2 + (a2lrlo - a,.z ),~ (1.138)

d(OC") = 1/(al rlo+a12T~ - k) 2+(o-, 1 "1o+a 22 Tro - k) 2, (1.139)

d(OD") = (ailrio - a12T~o - kl 2 +(2ro- a22r70 - kD . (1.140)

Equations (1.134) and (1.137) through (1.140) comprise result 1.

Proof of Result 2 and 3:

In Figure 16, we have shown two sets, S. and u which is obtained from S. by a translation k =

(k, k2). The centroids of S . and S are, respectively, by 0 and K.
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Using equations (1.79), (1.64), (1.45), and (1.46), the distance from K to the reference lines 1i and 12

are given by

p(K, I) - la22k - a2k2I 
(1.141)

J'41; -- aI21

p(K, 12) = ,a~ki -at 1k2  (1.142)

p(K, 11) represents the perpendicular distance between the lines A'B' and A"B" and also between the lines

C'D' and C"D" (see Figure 16). Similarly, p(K, 12) is equal to the perpendicular distance between the

lines B'V and B"C" and also between the lines D'A' and D"A" (see Figure 16).

The state isotropic acceleration ai,(Su) is the maximum acceleration which is available in all direc-

tions. It is therefore equal to the minimum of the distances from the origin 0 (of the acceleration plane)

to the four sides of A"B"C"D" (the set Su).

Referring to Figure 16, we can write the following expression for aio(Su):

aiso(Su) = min[p(A"B"), p(B"C"), p(C"D"), p(D"A")] (1.143)

where p(A"B") is the (perpendicular) distance from 0 to A"B" and similarly for p(B"C"), p(C"D"),

p(D"A"), all assumed positive by definition, from the geometry of Figure 16, we can write,

p(A" B"), p(C" D") = p(A' B') ±- p(K, 11). (1.144)

(Comment: In Figure 16, for example, p(A"B") = p(A'B') + p(K, l1 ) and p(C"D") = p(C'D') - p(K, 11);

the correct choice of signs will depend on the direction of the translation but as will be shown below we

do not have to worry about the correct choice of signs.)

Similarly,

p(B"C"), p(D"A") = p(B'C') ± p(K, 12). (1.145)

(The above comment holds for (1.145), too.)

Combining equations (1.143), (1.144), and (1.145), we obtain

a%.o(Su) = min[p(A'B') ± p(K, l), p(B'C') ± p(K, 12)]. (1.146)
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Since all distances PO in the above equation ae positive by definition, we can rewrite the above equation

as

ai5o(Su) = min[p(A'B') - p(K, 11), p(B'C') - p(K, 12)]. (1.147)

Substituting equations (1.80), (1.81), (1.141) and (1.142) into (1.147), we obtain the required result

(1.133).

Equation (1.147) clearly demonstrates that the isotropic acceleration ai,(Su) for any state u # 0 is less

than ai..(S,) = min[p(A'B'), p(B'C')]. In fact, if p(K, 11) and p(K, 12) are sufficiently large (equivalently,

the "nonlinearities" k1 and k2 are sufficiently "large"), we may not have any isotropic acceleration. The

necessary and sufficient conditions for the existence of the isotropic acceleration can be obtained either

from (1.147) or (1.133). From (1.133), we obtain the following two necessary and sufficient conditions

for the existence of the isotropic acceleration:

I det(A)ITlo - lkia22 - k2al21 > 0, (1.148)

I det(A)JrT - Ikia 2i - k2aill > 0. (1.149)

These are exactly the necessary and sufficient conditions expressed in (1.131) and (1.132) of result 2.
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6 Local acceleration properties

At any given (local) configuration q in the workspace, the following questions are of theoretical and

practical importance.

e What is the magnitude of the maximum acceleration at any configuration q in the workspace?

* What is the magnitude of the isotropic acceleration at any configuration q in the workspace?

To answer both these questions, we need to use the properties of the sets S,, S4 Su developed in the

preceding subsection.

Result 1: The local maximum acceleration am1 ,locw at a given configuration q is specified by

(am,.,o )U, < a.., 0 ,d < (am..,locu)ub (1.150)

where (amiIoA)b is given by (1.130) with kI(q, 4) and k2(q, 4) evaluated at that joint variable

vector q which maximizes l(41, 42) in equation (1.89).

(amax,Ioca )ub = aimax(Sq) + amax(Si,) (1.151)

where amax(Sq) is given by (1.89) and amax(Si,) is given by (1.69).

Result 2: The local isotropic acceleration aisoI at a given configuration q is specified by

aim,local

- min[p(A'B') - Pmax(k(Sq), Ii), p(B'C') - Pmax(k(Sq), 12)] (1.152)

where p(A'B') and p(B'C') are given, respectively, by equations (1.80) and (1.81), and where

max(x(Sq), I) and max(k(Sq),12) are given by equation (1.92).

Proof of Result 1:

The local maxim-un acceleration am,, is the maximum acceleration over all possible state acceleration

sets Su at a given position q in the workspace. Therefore, amax can be written as

ainx,locat = max(UqEFSu). (1.153)
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Figure 17: Maximum local acceleration of a two degree-of-freedom manipulator

It is not possible to find an exact analytical expression for azo. However, we can find an upper

bound and lower bound which are very good approximations to a2 nax,loWa.

Corresponding to every point P of the set Sq, we have a state acceleration set Su(P). Let P' be the

furthest point (from the origin) of S4, and let Su(P') be the corresponding state acceleration set, as shown

in Figure 17. Also shown in Figure 17 is the set S'(P') obtained by rotating the set Su(P') about P' till

the longest diagonal (A"C" in this case) of Su is collinear with the line OP' joining the origin to the

furthest point P' of Sq. It is easily seen from Figure 17, that if vertex A' is the furthest vertex of Su(P')

from 0, then a lower bound is given by

(amx,oj)lb = d(OA"), (1.154)

and an upper bound for amxlo is given by

(amax,loc)ub = d(OP') + d(A"P'), (1.155)
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(aiIoI)b = a..(Sq) + am.(Sr). (1.156)

In general, one of the four vertices A",B", C",or D" would be the furthest vertex of Su and therefore we

should write (1.154) as

(amuxo)Ib = max[d(OA"), d(OB"), d(OC"), d(OD")]. (1.157)

Combining (1.157) with equation (1.137) through (1.140), we obtain equation (1.130). The values of

k, and k2 in (1.130) correspond to the furthest vertex p' of Se from the origin, i.e., to that joint variable

vector 4 which maximizes 1(41, 2) in equation (1.89). This is simply a matter of computing 1(41, /2)

at the four vectors (41,o, -qq), ( qz)T, (qio, qzo)T and (41o, )T defined in subsection 3.2.2 and

determining which of these four vectors maximizes /(41, 42). This completes the determination of the

lower bound (amI),.

Substituting for am.(Sq) and am,(S,) from equations (1.89) and (1.69), respectively, we obtain

equation (1.151). Thus, Result I is proved.

Proof of result 2:

The local isotropic acceleration is obtained in the following steps.

1. The maximum possible isotropic acceleration is obtained when q = 0 and is equal to a,,o(S,) as

given by equation (1.70).

2. Every state acceleration set will have an isotropic acceleration which is less than that given by

(1.70) because the "nonlinearities" effectively reduce the isotropic acceleration. The resulting state

isotropic acceleration is aio(Su) which is given by equation (1.147).

3. The local isotropic acceleration aio, 1oj is the magnitude of the smallest state isotropic acceleration

at a given local configuration q, i.e.

aisojocal = min aiso(Su). (1.158)
qEF

4. Using equation (1.147) and (1.158), we can express the local isotropic acceleration aisoo, as

aioIow = minmin[p(A'B') - p(K, 11), p(B'C') - p(K, 12)]

= min[min{p(A'B') - p(K, 11)}, min{p(B'C') - p(K,12)}]. (1.159)
qEF 4lEF
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5. Since p(A'B') and p(B'C') are constants for a given manipulator and given actuator constraints,

(1.159) can be written as

aisojow = min[p(A'B') - max p(K, 11 ), p(B'C') - max p(K, 12)]. (1.160)

where max(p(K, 1)) is the distance from the line 11 to the element of S4 furthest away from 11

which we denoted in subsection 3.2.2 by p, (k(Sq), 1), and max(p(K, 12)) is the distance from the

line 12 to the element of Sq furthest away from 12 which we denoted by pma(t(Sq), 12). We can

therefore write

max p(K, 11) = pmax(k(Sq), l) (1.161)

maxp(K,12) = pmax(X(S4),1 2) (1.162)

Combining (1.160), (1.161) and (1.162), we obtain the required result (1.152). (Note that all

quantities in (1.152) have been analytically determined earlier.)
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7 Summary and conclusions

In this paper, we have developed a theory for the acceleration sets of planar manipulators. In particular,

we have accomplished the following:

" Given the kinematical and dynamical equations of a manipulator, we have defined the image set S,

corresponding to the set T of actuator torques, and the image set Sq corresponding to the set F of

the joint variable rates. We have also defined the state acceleration set Su at a specified point u in

the state space.

" We have determined the image sets, S,- and S41, and the state acceleration set Su.

" We have characterized the image sets S, and the state acceleration set Su by their maximum and

isotropic acceleration. The image set S1 has been also characterized by the maximum acceleration.

* At a configuration or position, q. in the workspace, we have established two local acceleration

properties: the local maximum acceleration and the local isotropic acceleration. The local maximum

acceleration specifies the magnitude of the maximum acceleration of (a reference point on) the

end-effector. fhe local isotropic acceleration specifies the magnitude of the maximum available

acceleration of the end-effector in all directions.

We have, therefore, demonstrated the hypothesis which we stated in the introduction, i.e., that the

analytical properties of acceleration sets can be determined from the properties of the linear and quadratic

mappings which define them (the acceleration sets). Furthermore, the acceleration properties of interest

- especially the isotropic acceleration - have been determined in terms of the manipulator parameters

and the torque limits and joint variable rate ("joint velocity") limits. The stage has now been set for

the application of the theory developed in this paper to problems in the design of manipulators in the

companion paper (Desa and Kim, 1989).
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Appendix. Equations of motion for the two degree-of-freedom planar manipulators

1. Jacobian matrix

The joint variable rate is related to the velocity in Cartesian space by the Jacobian matrix.

I=J4.

The Jacobian matrix J of the two degree-of-freedom manipulator shown in Figure 1 is the following:

J [I -lIsinqI -zsin(qI+q2) -12sin(ql+q2) 1
11 cos q, + 12 cos(qi + q2) 12 cos(q + q2) J

When this relationship is differentiated with respect to the time, we obtain the following equation,

it = Jq + 34 = Jql - E{4}2 (1.163)

where E is the matrix which has the following elements:

E= [ Icos ql +12 cos(ql + q2) 12 cos(ql + q2) 1
1 1 sin q, + 12 sin(ql + q2) 12 sin(ql + q2) J

2. Dynamic equation

The dynamics of the two-degree-of-freedom planar manipulator shown in Figure 1 is described by the

following equation:

Dq + V{4) 2 =" , (1.164)

whcre the components of matrices D and V are as follows:

D= l +mla?2 +12+m2(a22+2a211 cosq2 + 121) 12+m2(a2+a2I cosq 2) 1
[12 + M2(a2 + a211 cos q2) 12 + M2a4

M2a21m sin q2 0

and the nonlinear vector {q} 2 is as follows:
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3. Acceleration equation

The expression of the acceleration of the end-effector is as follows:

I= Ar + B{4 2  (1.165)

where

A =JD 1  (1.166)

B = -AV - E (1.167)
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